Direct Common Tangents of Two Circles
Interactive Tutorial with Step-by-Step Solution
Problem Statement
Find the direct common tangents of the circles:
Circle 1: x² + y² + 22x - 4y - 100 = 0
Circle 2: x² + y² - 22x + 4y + 100 = 0
Circle 2: x² + y² - 22x + 4y + 100 = 0
Step 1: Convert to Standard Form
Circle 1: x² + y² + 22x - 4y - 100 = 0
Completing the square:
Group terms: (x² + 22x) + (y² - 4y) = 100
For x terms: x² + 22x + 121 = (x + 11)² - 121
For y terms: y² - 4y + 4 = (y - 2)² - 4
(x + 11)² - 121 + (y - 2)² - 4 = 100
(x + 11)² + (y - 2)² = 225
For x terms: x² + 22x + 121 = (x + 11)² - 121
For y terms: y² - 4y + 4 = (y - 2)² - 4
(x + 11)² - 121 + (y - 2)² - 4 = 100
(x + 11)² + (y - 2)² = 225
Result: Center C₁(-11, 2), radius r₁ = 15
Circle 2: x² + y² - 22x + 4y + 100 = 0
Group terms: (x² - 22x) + (y² + 4y) = -100
For x terms: x² - 22x + 121 = (x - 11)² - 121
For y terms: y² + 4y + 4 = (y + 2)² - 4
(x - 11)² - 121 + (y + 2)² - 4 = -100
(x - 11)² + (y + 2)² = 25
For x terms: x² - 22x + 121 = (x - 11)² - 121
For y terms: y² + 4y + 4 = (y + 2)² - 4
(x - 11)² - 121 + (y + 2)² - 4 = -100
(x - 11)² + (y + 2)² = 25
Result: Center C₂(11, -2), radius r₂ = 5
Step 2: Check Circle Positions
Distance between centers:
d = √[(11-(-11))² + (-2-2)²]
d = √[22² + (-4)²] = √[484 + 16] = √500 = 10√5 ≈ 22.36
d = √[(11-(-11))² + (-2-2)²]
d = √[22² + (-4)²] = √[484 + 16] = √500 = 10√5 ≈ 22.36
Since d = 10√5 > r₁ + r₂ = 20, the circles are external and separate.
Therefore, direct common tangents exist.
Step 3: Set Up Distance Equations
Let the tangent line be: ax + by + c = 0
For direct common tangents:
Distance from C₁(-11, 2) = 15
Distance from C₂(11, -2) = 5
|-11a + 2b + c|/√(a² + b²) = 15
|11a - 2b + c|/√(a² + b²) = 5
Distance from C₂(11, -2) = 5
|-11a + 2b + c|/√(a² + b²) = 15
|11a - 2b + c|/√(a² + b²) = 5
Step 4: Solve the System
For direct tangents, both expressions have the same sign:
-11a + 2b + c = ±15√(a² + b²)
11a - 2b + c = ±5√(a² + b²)
11a - 2b + c = ±5√(a² + b²)
Solving the algebra (subtracting and adding equations):
96a² - 44ab - 21b² = 0
96(a/b)² - 44(a/b) - 21 = 0
96(a/b)² - 44(a/b) - 21 = 0
Using quadratic formula: a/b = 3/4 or a/b = -7/12
Step 5: Find the Tangent Lines
For a/b = 3/4:
Let a = 3, b = 4
Using distance conditions: c = -50
First tangent: 3x + 4y - 50 = 0
Using distance conditions: c = -50
First tangent: 3x + 4y - 50 = 0
For a/b = -7/12:
Let a = 7, b = -24 (scaled appropriately)
Using distance conditions: c = -250
Second tangent: 7x - 24y - 250 = 0
Using distance conditions: c = -250
Second tangent: 7x - 24y - 250 = 0
Step 6: Verification
For 3x + 4y - 50 = 0:
Distance from C₁(-11, 2): |3(-11) + 4(2) - 50|/5 = 75/5 = 15 ✓
Distance from C₂(11, -2): |3(11) + 4(-2) - 50|/5 = 25/5 = 5 ✓
Distance from C₂(11, -2): |3(11) + 4(-2) - 50|/5 = 25/5 = 5 ✓
For 7x - 24y - 250 = 0:
Distance from C₁(-11, 2): |7(-11) - 24(2) - 250|/25 = 375/25 = 15 ✓
Distance from C₂(11, -2): |7(11) - 24(-2) - 250|/25 = 125/25 = 5 ✓
Distance from C₂(11, -2): |7(11) - 24(-2) - 250|/25 = 125/25 = 5 ✓
Final Answer
The direct common tangents are:
1. 3x + 4y - 50 = 0
2. 7x - 24y - 250 = 0
2. 7x - 24y - 250 = 0
Interactive Visualization
Legend:
🔴 Circle 1: Center(-11, 2), r=15
🔵 Circle 2: Center(11, -2), r=5
🟢 Direct Common Tangents