Rules for Dividing Integers An interactive guide to mastering integer division!

Interactive Rules for Dividing Integers

Rules for Dividing Integers

An interactive guide to mastering integer division!

The Four Key Rules

Positive ÷ Positive

Result is Positive (+)

24 ÷ 6 = 4

Negative ÷ Negative

Result is Positive (+)

(-15) ÷ (-3) = 5

Positive ÷ Negative

Result is Negative (-)

42 ÷ (-7) = -6

Negative ÷ Positive

Result is Negative (-)

(-10) ÷ 5 = -2

Simple Trick: If the signs are the SAME, the answer is POSITIVE. If the signs are DIFFERENT, the answer is NEGATIVE.

Visualize Division on a Number Line

÷

Why Dividing Two Negatives Makes a Positive

Think of division as asking a question: "How many jumps of a certain size do I need to take to get to my destination?"

Let's use the example: -8 ÷ (-2)

  • Destination (Dividend): -8.
  • Jump Size (Divisor): Jumps of size -2.
  • The Question: "How many jumps of `(-2)` does it take to land on `-8`?"

It takes exactly 4 jumps to get from 0 to -8. The answer is the count of the jumps. Since a "count" is positive, the answer is positive. That's why the final red arrow points to +4!

Test Your Knowledge!

What is the answer to:

Post a Comment

Previous Post Next Post