Mathematics IIA: Interactive Paper 2025 Half Yearly Examinations -IPE 2A

Maths IIA Interactive Paper

Mathematics IIA: Interactive Paper

Max. marks: 75 Time: 3 hours

Review the Maths IIA exam paper below. Navigate sections using the tabs. Click "Show Solution" to reveal the step-by-step answer. For statistics questions, use the "Visualize Data" button to see the dataset plotted.

1. Write the conjugate of $(3+4i)(2-3i)$

Step 1: Simplify the complex number by multiplication.

$$ z = (3+4i)(2-3i) = 6 - 9i + 8i - 12i^2 $$

Since $i^2 = -1$, we substitute:

$$ z = 6 - i - 12(-1) = 6 - i + 12 = 18 - i $$

Step 2: Find the conjugate.

The conjugate of $a+bi$ is $a-bi$. Therefore, $\bar{z} = 18 + i$.

2. If $(a+ib)^2 = x+iy$ find $x^2+y^2$

Take the modulus of both sides:

$$ |(a+ib)^2| = |x+iy| $$

Using property $|z^n| = |z|^n$:

$$ |a+ib|^2 = \sqrt{x^2+y^2} $$ $$ (\sqrt{a^2+b^2})^2 = \sqrt{x^2+y^2} $$ $$ a^2+b^2 = \sqrt{x^2+y^2} $$

Squaring both sides gives the result:

$$ x^2+y^2 = (a^2+b^2)^2 $$

3. Find the value of $(1-i)^8$

Rewrite as powers of squares:

$$ (1-i)^8 = ((1-i)^2)^4 $$

Calculate inner square:

$$ (1-i)^2 = 1 - 2i + i^2 = 1 - 2i - 1 = -2i $$

Raise to 4th power:

$$ (-2i)^4 = (-2)^4 \cdot i^4 = 16 \cdot 1 = 16 $$

4. Find the quadratic equation whose roots are $7 \pm 2\sqrt{5}$

Let roots be $\alpha, \beta = 7 \pm 2\sqrt{5}$.

Sum ($S$): $(7+2\sqrt{5}) + (7-2\sqrt{5}) = 14$

Product ($P$): $(7+2\sqrt{5})(7-2\sqrt{5}) = 49 - 20 = 29$

Equation is $x^2 - Sx + P = 0$:

$$ x^2 - 14x + 29 = 0 $$

5. If -1, 2, $\alpha$ are the roots of $2x^3+x^2-7x-6=0$ then find $\alpha$

Using relation between roots and coefficients for $ax^3+bx^2+cx+d=0$:

$$ \text{Sum of roots} = -\frac{b}{a} = -\frac{1}{2} $$

Given roots are $-1, 2, \alpha$:

$$ -1 + 2 + \alpha = -\frac{1}{2} $$ $$ 1 + \alpha = -\frac{1}{2} $$ $$ \alpha = -\frac{3}{2} $$

6. Find the number of ways of arranging letters of the word 'INTERMEDIATE'

Total letters ($n$) = 12.

Repeated letters: I(2), T(2), E(3).

Formula: $\frac{n!}{p!q!r!...}$

$$ \text{Ways} = \frac{12!}{2! \cdot 2! \cdot 3!} = \frac{12!}{24} $$

7. Find the number of ways of selecting 4 boys and 3 girls from a group of 8 boys and 5 girls

Select 4 boys from 8: $\binom{8}{4} = 70$

Select 3 girls from 5: $\binom{5}{3} = 10$

Total ways:

$$ 70 \times 10 = 700 $$

8. Prove that $C_0+2.C_1+4.C_2+ \dots +2^n.C_n=3^n$

Binomial expansion:

$$ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n $$

Substitute $x=2$:

$$ (1+2)^n = C_0 + 2C_1 + 2^2C_2 + \dots + 2^nC_n $$ $$ 3^n = C_0 + 2C_1 + 4C_2 + \dots + 2^nC_n $$

Hence proved.

9. Find the mean deviation about median for the data 4, 6, 9, 3, 10, 13, 2

Visualize Data

1. Sort Data: 2, 3, 4, 6, 9, 10, 13 ($n=7$)

2. Median ($M$): 4th term = 6.

3. Deviations $|x_i - M|$:

|2-6|=4, |3-6|=3, |4-6|=2, |6-6|=0, |9-6|=3, |10-6|=4, |13-6|=7

4. Mean Deviation:

$$ \text{MD} = \frac{\sum |x_i - M|}{n} = \frac{4+3+2+0+3+4+7}{7} = \frac{23}{7} \approx 3.28 $$

10. Find the variance for the discrete data 6, 7, 10, 12, 13, 4, 8, 12

Visualize Data

1. Mean ($\bar{x}$): Sum = 72, $n=8$. $\bar{x} = 9$.

2. Squared Deviations $(x_i - 9)^2$:

9, 4, 1, 9, 16, 25, 1, 9. Sum = 74.

3. Variance ($\sigma^2$):

$$ \sigma^2 = \frac{74}{8} = 9.25 $$

Post a Comment

Previous Post Next Post