Trigonometric Functions

Trigonometric Functions

Trigonometric Functions

3.1 Introduction

Definition: Trigonometric functions relate angles to the ratios of sides in a right triangle.

Applications: Used in geometry, physics, engineering, and periodic phenomena (waves, oscillations).

Key Concepts:

  • Unit circle approach.
  • Angle measurement (degrees, radians).

3.2 Angles

Types of Angles:

  • Acute (<90°), Right (90°), Obtuse (>90°), Straight (180°).

Units:

  • Degrees (°) and Radians (1 rad ≈ 57.3°).
  • Conversion: π rad = 180°.

Angle Conventions:

  • Positive (counter-clockwise), Negative (clockwise).
  • Coterminal angles (same terminal side, e.g., 30° and 390°).

3.3 Trigonometric Functions

Primary Functions: Defined for an angle θ in a right triangle or unit circle.

  • Sine (sinθ): Opposite/Hypotenuse (y/r).
  • Cosine (cosθ): Adjacent/Hypotenuse (x/r).
  • Tangent (tanθ): Opposite/Adjacent (y/x).

Reciprocal Functions:

  • Cosecant (cscθ = 1/sinθ), Secant (secθ = 1/cosθ), Cotangent (cotθ = 1/tanθ).

Unit Circle:

  • For any angle θ, (x, y) = (cosθ, sinθ).

Signs in Quadrants:

Quadrant Positive Functions
I All
II sin, csc
III tan, cot
IV cos, sec

3.4 Trigonometric Functions of Sum and Difference of Two Angles

Key Identities:

  • sin(A ± B) = sinA cosB ± cosA sinB
  • cos(A ± B) = cosA cosB ∓ sinA sinB
  • tan(A ± B) = (tanA ± tanB)/(1 ∓ tanA tanB)

Applications:

  • Simplifying expressions.
  • Solving trigonometric equations.
  • Deriving double-angle/half-angle formulas.

Example:

Find sin(15°) using 15° = 45° - 30°:

sin(45° - 30°) = sin45° cos30° - cos45° sin30° = (√2/2)(√3/2) - (√2/2)(1/2) = (√6 - √2)/4

Visual Summary:

  • Unit Circle: Memorize key angles (0°, 30°, 45°, 60°, 90°) and their sine/cosine values.
  • Graphs: sinθ and cosθ are periodic (2π), tanθ has period π.

Post a Comment

Previous Post Next Post