simplify the expression:we can proceed step-by-step using trigonometric identities and properties of complex numbers.

Complex Expression Simplification

Simplification of Complex Trigonometric Expression

Problem Statement

Simplify the following complex expression:

\[ \frac{(\cos\alpha + i\sin\alpha)^4}{(\sin\beta + i\cos\beta)^8} \]

Detailed Solution

Step 1: Express in Exponential Form Using Euler's Formula

Recall Euler's formula:

\[ \cos\theta + i\sin\theta = e^{i\theta} \]

Numerator Simplification:

\[ (\cos\alpha + i\sin\alpha)^4 = (e^{i\alpha})^4 = e^{i4\alpha} \]

Denominator Simplification:

First, rewrite the denominator:

\[ \sin\beta + i\cos\beta = i(\cos\beta - i\sin\beta) = i e^{-i\beta} \]

Then raise to the 8th power:

\[ (i e^{-i\beta})^8 = i^8 \cdot e^{-i8\beta} = 1 \cdot e^{-i8\beta} = e^{-i8\beta} \]

Step 2: Combine Numerator and Denominator

\[ \frac{e^{i4\alpha}}{e^{-i8\beta}} = e^{i4\alpha + i8\beta} = e^{i(4\alpha + 8\beta)} \]

Step 3: Convert Back to Trigonometric Form

Using Euler's formula in reverse:

\[ e^{i(4\alpha + 8\beta)} = \cos(4\alpha + 8\beta) + i\sin(4\alpha + 8\beta) \]

Final Simplified Form

\[ \boxed{\cos(4\alpha + 8\beta) + i\sin(4\alpha + 8\beta)} \]

Alternative Representation

The expression can also be written as:

\[ \cos[4(\alpha + 2\beta)] + i\sin[4(\alpha + 2\beta)] \]

This form makes the periodicity more apparent.

Post a Comment

Previous Post Next Post